The timing of neuronal loss across adolescence in the medial prefrontal cortex of male and female rats.

نویسندگان

  • J Willing
  • J M Juraska
چکیده

Adolescence is a critical period of brain maturation characterized by the reorganization of interacting neural networks. In particular the prefrontal cortex (PFC), a region involved in executive function, undergoes synaptic and neuronal pruning during this time in both humans and rats. Our laboratory has previously shown that rats lose neurons in the medial prefrontal cortex (mPFC) and there is an increase in white matter under the frontal cortex between adolescence and adulthood. Female rats lose more neurons during this period, and ovarian hormones may play a role as ovariectomy before adolescence prevents neuronal loss. However, little is known regarding the timing of neuroanatomical changes that occur between early adolescence and adulthood. In the present study, we quantified the number of neurons and glia in the male and female mPFC at multiple time points from preadolescence through adulthood (postnatal days 25, 35, 45, 60 and 90). Females, but not males, lost a significant number of neurons in the mPFC between days 35 and 45, coinciding with the onset of puberty. Counts of GABA immunoreactive cell bodies indicated that the neurons lost were not primarily GABAergic. These results suggest that in females, pubertal hormones may exert temporally specific changes in PFC anatomy. As expected, both males and females gained white matter under the PFC throughout adolescence, though these gains in females were diminished after day 35, but not in males. The differences in cell loss in males and females may lead to differential vulnerability to external influences and dysfunctions of the PFC that manifest in adolescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of systemic and intra-prefrontal cortex administrations of ethanol on spatial working memory in male rats

Introduction: Ethanol can induce a wide spectrum of neurophysiological effects via interaction with multiple neurotransmitter systems and disruption of the balances between inhibitory and excitatory neurotransmitters. Prefrontal cortex is involved in cognitive process including working memory and is sensitive to ethanol. Present study investigates the effects of intraperitoneal (i.p.) admini...

متن کامل

Effect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats

Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...

متن کامل

The Study of Apomorphine Effects and Heterogeneity in the Medial Prefrontal Cortex on the Dopaminergic Behaviors of Rats

Objective(s) While the nucleus accumbens and the striatum have received much attention regarding their roles in stereotyped behaviors, the role of the medial prefrontal cortex (mPFC) has not been investigated to the same degree. Few studies have reported the role of the mPFC in dopaminergic induction of locomotor hyperactivity. The mPFC is a heterogeneous area (the anterior cingulated, prelimbi...

متن کامل

Structural Changes in the Medial Prefrontal Cortex and Anterior Cingulate Cortex of Dehydroepiandrosterone-Induced Wistar Rat Model of Polycystic Ovarian Syndrome

Introduction: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder in women that is associated with an increased risk of infertility. This study aims to evaluate the neurobehavioral and neurochemical changes along with the associated changes in the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) of the dehydroepiandrosterone (DHEA)-induced PCOS model rats. Metho...

متن کامل

P27: Brain Network as a Pivotal Part in Intelligence Function

Neuroimaging findings have proposed that some brain regions including the precuneus, posterior cingulate, and medial prefrontal cortex play an essential role of a structural core in the brain. Network organization endures rapid alterations in development with changes in axonal synaptic connectivity, white matter volume, and the thickness of corresponding cortical regions. Structural maturation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 301  شماره 

صفحات  -

تاریخ انتشار 2015